
GalaXC: Graph Neural Networks with Labelwise Attention for
Extreme Classification

Deepak Saini∗
Microsoft Research
Bengaluru, India

desaini@microsoft.com

Arnav Kumar Jain∗†
MILA

Montreal, Canada
arnavkj95@gmail.com

Kushal Dave∗
Microsoft

Redmond, USA
kudave@microsoft.com

Jian Jiao
Microsoft

Redmond, USA
jiajia@microsoft.com

Amit Singh
Microsoft

Bengaluru, India
siamit@microsoft.com

Ruofei Zhang
Microsoft

Redmond, USA
bzhang@microsoft.com

Manik Varma
Microsoft Research
Bengaluru, India

IIT Delhi
Delhi, India

manik@microsoft.com

ABSTRACT
This paper develops the GalaXC algorithm for Extreme Classifi-
cation, where the task is to annotate a document with the most
relevant subset of labels from an extremely large label set. Extreme
classification has been successfully applied to several real world
web-scale applications such as web search, product recommenda-
tion, query rewriting, etc. GalaXC identifies two critical deficien-
cies in leading extreme classification algorithms. First, existing
approaches generally assume that documents and labels reside in
disjoint sets, even though in several applications, labels and docu-
ments cohabit the same space. Second, several approaches, albeit
scalable, do not utilize various forms of metadata offered by appli-
cations, such as label text and label correlations. To remedy these,
GalaXC presents a framework that enables collaborative learning
over joint document-label graphs at massive scales, in a way that
naturally allows various auxiliary sources of information, including
label metadata, to be incorporated. GalaXC also introduces a novel
label-wise attention mechanism to meld high-capacity extreme clas-
sifiers with its framework. An efficient end-to-end implementation
of GalaXC is presented that could be trained on a dataset with
50M labels and 97M training documents in less than 100 hours

∗All authors contributed equally to this research.
†Work done while the author was employed at Microsoft.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449937

on 4×V100 GPUs. This allowed GalaXC to not only scale to ap-
plications with several millions of labels, but also be up to 18%
more accurate than leading deep extreme classifiers, while being
upto 2-50× faster to train and 10× faster to predict on benchmark
datasets. GalaXC is particularly well-suited to warm-start scenarios
where predictions need to be made on data points with partially
revealed label sets, and was found to be up to 25% more accurate
than extreme classification algorithms specifically designed for
warm start settings. In A/B tests conducted on the Bing search
engine, GalaXC could improve the Click Yield (CY) and coverage
by 1.52% and 1.11% respectively. Code for GalaXC is available at
https://github.com/Extreme-classification/GalaXC

CCS CONCEPTS
• Computing methodologies→Machine learning; Supervised
learning by classification.

KEYWORDS
Extreme classification, warm start, large output spaces, web-scale
recommendation, sponsored search

ACM Reference Format:
Deepak Saini, Arnav Kumar Jain, Kushal Dave, Jian Jiao, Amit Singh, Ruofei
Zhang, and Manik Varma. 2021. GalaXC: Graph Neural Networks with
Labelwise Attention for Extreme Classification. In Proceedings of the Web
Conference 2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3442381.3449937

1 INTRODUCTION
Overview Extreme Classification (XC) refers to the task of tagging
a documentwith its most relevant subset of labels from an extremely
large label space. Several problems such as search advertising [42],
related product recommendation [35], related query recommen-
dation [22], etc have been formulated as XC problems leading to

https://doi.org/10.1145/3442381.3449937
https://github.com/Extreme-classification/GalaXC
https://doi.org/10.1145/3442381.3449937

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Saini, et al.

significant gains. In particular, XC algorithms can be effectively
applied to sponsored search applications where retrieving the most
relevant advertisement for a user query is crucial to improving
user experience as well as business goals. Recently, deep XC tech-
niques have gained popularity where diverse architectures such as
multi-layer perceptron [35], CNN [31], attention [57], and trans-
formers [9] have been utilized. These works have demonstrated that
learning dense application-specific document representations can
lead to better predictions than using application-agnostic features
such as the traditional bag-of-words features.

Short Text Applications: This paper will focus on short-text
applications that have generated significant interest in recent years
[9, 10, 35, 38]. These describe situations where documents are pre-
sented with only short textual descriptions, with typically only 5-10
tokens. Examples include applications such as predicting related
webpages or related products using only the title of a given web-
page/product and predicting relevant ads/keywords/searches for
user queries, among others. Short-text applications pose additional
challenges to XC routines owing to the paucity of descriptive data
available for each document.

Label Features and Tail Labels: The core utility of extreme
classification comes from being able to accurately predict tail labels.
These are labels that are rarely seen during training. Table 2 shows
that in multiple datasets, the average label can be present in as few
as 5 training documents. It becomes challenging to learn accurate
label classifiers with such paucity of training data. However, XC
applications often make available label metadata in various forms
such as label text, label correlations or label hierarchies. Textual
representations for labels can have highly relevant information
imbued in them like product name, brand, or attributes (like color,
size, etc.). Other examples of label text include the textual content
of advertiser bid phrases in sponsored search, categories of articles
on Wikipedia, and titles of products on e-commerce platforms such
as Amazon, etc. These textual features can help capture seman-
tic correlations between documents and labels promoting more
accurate predictions, especially for tail labels. Furthermore, in spon-
sored search applications, tail queries can be longer in terms of
the number of tokens and also contain more granular information
in them. This makes it more advantageous to include label text in
order to better service tail labels for which sufficient training data
is otherwise not available [4, 23].

XC with Label Features: A few contemporary XC algorithms
have explored utilizing label features. SwiftXML [41] incorporates
label features based on pre-trained Word2Vec [36] vectors over the
label text. However, the method does not learn task-specific label
features. X-Transformers [9] obtained its label features from various
sources such as pre-trained XLNet [53], Word2Vec [37], and TF-IDF
embeddings. These label features were used to cluster the label set
in order to fine-tune the embedding models to learn efficient docu-
ment embeddings, and mine hard negatives for training the ranker.
However, label features do not directly influence the learning of
document features in XTransformer. The recently proposed method
DECAF [38] does make direct use of label text while learning its
classifier. This method will be of specific interest to GalaXC due
to its use of label metadata although it does not incorporate label
or document correlations in any form unlike GalaXC which learns
over a joint document-label graph.

Warm-start and Auxiliary Sources of Data: In recommenda-
tion and multi-label applications, warm start [14, 30, 39, 41] refers
to scenarios where a (small) subset of relevant labels for a (test) doc-
ument is revealed before requiring further predictions to be made
by the algorithm. For example, consider the Q2K application of
matching a user query to the most relevant subset of keywords bid
by advertisers. This can be formulated as an extreme classification
task where the queries become the documents and the set of most
monetizable keywords (from a pool of 50M available keywords)
are the labels. For a lot of queries, there might already be a set
of keywords available corresponding to which ad-clicks by users
were previously observed [41]. These then become the warm-start
labels for the Q2K problem. Although standard XC algorithms can
also benefit from partially revealed ground truth, algorithms such
as SwiftXML [41] have been designed specifically for warm start
scenarios. It is possible to mine additional data from other sources
which, although not directly related to the application of interest,
may nevertheless help augment the primary sources of data. For
example, for the Q2K application, information about correlations be-
tween queries can be obtained from related searches which consist
of user preferences for other queries similar to the input query. Such
connections obtained from supplementary sources can then help
increase both the quality and quantity of data, particularly helping
data scarce tail labels/documents. However, not many existing XC
algorithms make effective use of such auxiliary signals.

Graph Neural Networks for XC: From another perspective,
extreme classification can be seen as a link prediction problem in
a bipartite graph given by G = (D ∪ L,E) where D and L denote
sets of nodes for documents and labels respectively, and E denotes
the edges encoding relevance links i.e. there is an edge (𝑑, 𝑙) ∈ E
between document 𝑑 ∈ D and label 𝑙 ∈ L iff 𝑙 is relevant to 𝑑 i.e. 𝑙
is a positive label for 𝑑 . This interpretation allows rich correlation
structures to be inferred. For instance, suppose documents 𝑑1, 𝑑2
share a common label 𝑙1. If there is another label 𝑙2 relevant to 𝑑2,
it can be inferred that 𝑙2 might be relevant to 𝑑1 as well. Such tran-
sitive inferences can be extremely valuable in XC settings where
missing labels abound and training documents are seldom tagged
exhaustively with all labels relevant to them (due to the inability
of human annotators to offer comprehensive tag sets, impression
biases, etc). However, current extreme classifiers find it difficult
to model such implicit transitive relations unless the pair (𝑑1, 𝑙2)
explicitly presents itself in the training set [59]. Recent advance-
ments in Graph Neural Networks (GNNs) [19, 51, 55] allow using
node neighborhoods to collaboratively learn more discriminative
features. However, existing works mostly use document-document
graphs and not joint document-label graphs at extreme scales.

GalaXC: GalaXC employs a joint graph over documents and
labels to learn superior node representations by performing graph
convolutions [26] over neighborhoods of various orders. As a result,
GalaXC encourages collaborative learning of document and label
embeddings that enable it to better utilize partially revealed labels
and additional data sources such as label metadata. However, in
extreme settings with millions of labels, the label set can exhibit
significant variations in terms of label semantics and each label
can have a different view of the graph, some preferring a more
local view whereas others benefiting from broader aggregations.
To address this, GalaXC proposes a novel label attention scheme

GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

wherein several representations are learnt for each node, using
convolutions of increasing orders. A label is then allowed to attend
to these multi-resolution representations while applying a label
classifier. In terms of standard XC metrics, GalaXC can be up to
18% and 25% more accurate than leading extreme classifiers in cold
and warm start scenarios, respectively. These improvements are
demonstrated on standard benchmark datasets, on a query-to-bid
sponsored search dataset, as well as on live A/B traffic on the Bing
search engine. Upon deployment on the Bing search engine for Q2K
applications, GalaXC offered boosts in the CY (click Yield) of 1.52%.
Further, GalaXC can be 2-50× faster to train and upto 10× faster at
prediction time than competing methods, allowing it to train on a
dataset with 50M labels in less than 100 hours, thereby making it
suitable for high query-volume time-critical applications.

Contributions: This paper makes the following contributions.

(1) It establishes the utility of using a joint document-label graph
to augment document features in short-text applications where
document representations may contain very few tokens.

(2) It proposes a novel per-label attention mechanism that allows
each label to attend to multi-resolution graph neighbourhoods.

(3) These insights are combined to develop the GalaXC algorithm
which, to best of our knowledge, is the first method to utilize a
joint label-document graph to learn features in extreme settings.

(4) An efficient implementation of GalaXC is proposed that al-
lows it to be trained much faster than existing deep extreme
classifiers and scale to tens of millions of labels.

(5) It presents a case study deploying GalaXC on live traffic on the
Bing search engine to show gains over an ensemble of state-of-
the art generative, XC, IR and two-tower models.

2 RELATEDWORK
Extreme Classification: XC algorithms can be broadly catego-
rized into two categories: 1) methods using pre-computed features
such as bag-of-words (BoW) and FastText[24], and 2) deep extreme
classifiers that learn task-specific embeddings jointly with the classi-
fiers. Method using pre-trained features can be further divided into
3 sub-categories. a) 1-vs-All classifiers methods like DISMEC [3],
PPDSparse [54], ProXML [4] that achieve state-of-the-art accura-
cies but require Ω (𝐿) time at prediction and Ω (𝑁𝐿) time to train
which becomes infeasible at extreme scales. b) 1-vs-Some classi-
fiers that employ negative sampling strategies to speed up training,
e.g., Parabel [42], Bonsai [25] learn a hierarchy over labels using
BoW features and use it to sample the most confusing negatives,
Slice [22] uses a small world Approximate Nearest Neighbor Search
(ANNS) graph to sample the hardest negatives. c) Tree-based classi-
fiers such as MLRF [2], FastXML [43], PfastreXML [23] that learn
an ensemble of trees to partition the label space, where each node
in the tree is split to optimize an objective such as the Gini index or
nDCG. Unfortunately, the negative sampling data structures used
by 1-vs-Some methods are not suitable when feature representa-
tions are jointly learnt with the classifiers. Tree-based algorithms
can have large training times and model sizes. The above methods
also do not make use of label features. On the other hand, deep
XC techniques like X-Transformer [9], Astec [10], XML-CNN [31],
MACH [35], DECAF [38], and AttentionXML [57] have shown bet-
ter performance by learning task-specific representations. Of these,

X-Transformer and DECAF employ label features as well. How-
ever, high capacity architectures such as CNN, RNN or attention
employed by these methods can be inaccurate on short-text docu-
ments where limited training data is available. Moreover, the model
ensembles learnt by MACH, X-Transformer and the label attention
employed by AttentionXML do not scale well to extreme settings.

Warm Start: XC methods have also been developed for warm
start scenarios [14, 30, 39, 41]. Notable is SwiftXML [41] which is a
tree-based classifier using sparse BoW features for documents and
pre-computed dense text embeddings [37] for features. SwiftXML
partitions tree nodes using two hyper-planes learnt jointly in the
label and document feature spaces.

Neural Networks over Graphs: Earlier methods [17, 45, 48]
relied on RNNs that used neighborhood information to iterate over
node embeddings until convergence. More recent algorithms apply-
ing convolutions over the graph can be divided into two categories
– spectral and non-spectral. Spectral approaches [8, 11, 26] are
based on an eigen-decomposition of the graph Laplacian. A ma-
jor limitation with these methods is that they require retraining
the spectral kernels even with small perturbations in the graph
structure. Non-spectral methods [19, 49, 51] define convolutions on
spatially proximal neighborhoods of a node. GraphSAGE [19] pro-
posed the computation of node representations in an inductive way
by recursively aggregating over fixed-sized neighborhoods. [51]
provided theoretical foundations for GNNs based on the Weisfeiler
Lehman (WL) test and proposed the Graph Isomorphism Network
(GIN) with discriminative power equal to that of the WL test.

Attention Mechanisms: Using attention to focus on the most
relevant parts of the input while making decisions has become a
standard choice in many tasks [5, 15]. In extreme classification, At-
tentionXML [57] introduced the idea of per-label attention where
for each label, the network attends to the most relevant parts of
the document embedding. However, the complexity of the method
increases with the number of labels making it unsuitable for large
scale applications. More recently, there has been a growing interest
towards applying attention in GNNs. Graph Attention Networks
(GAT) [49] exploits the fact that node representation have differ-
ent level of similarity with their neighbors and uses multi-head
attention for feature aggregation with increased model capacity.

3 PROBLEM SETTING
We recall the interpretation of extreme classification as a link pre-
diction problem on a vast bipartite graph as discussed in Section 1.
This section formalizes this problem and identifies issues in directly
applying existing GNN techniques to this task.

Notation Let 𝐿 be the number of labels,𝑉 be the dictionary size,
and 𝑁 be the number of training documents. For each document
𝑖 ∈ [𝑁], y𝑖 ∈ {−1, +1}𝐿 denotes its ground truth label vector
with 𝑦𝑖𝑙 = +1 if label 𝑙 ∈ [𝐿] is relevant to the 𝑖th document and
𝑦𝑖𝑙 = −1 otherwise. The documents and labels are arranged in a
graph G = (V,E) with V = D ∪ L where D,L are respectively
the set of documents and labels1. E ⊂ D × L is the set of edges
denoting ground truth relation between documents and labels i.e.

1In some applications, such as related webpage prediction or related product prediction,
some train documents may act as labels for other train documents. In such cases, the
sets D,L are not disjoint and the graph has less than 𝑁 + 𝐿 nodes.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Saini, et al.

Num. of hops (𝐾) P@1 P@5 PSP@1 PSP@5
1 17.63 09.07 15.77 17.79
2 15.30 07.72 13.75 15.22
3 11.85 05.94 10.21 11.05

Table 1: Performance of GraphSage deteriorates with in-
creasing number of hops on LF-WikiSeeAlsoTitles-320K. A
fanout of 10 was used in each of the hops.

for document 𝑖 ∈ [𝑁] and label 𝑙 ∈ [𝐿], we have (𝑖, 𝑙) ∈ E iff 𝑦𝑖𝑙 =
+1. For each document 𝑖 ∈ [𝑁] and label 𝑙 ∈ [𝐿], a 𝐷-dimensional
initial representation of their textual features, respectively x̂0

𝑖
and ẑ0

𝑙
,

is available (for instance using pre-trained FastText [7], BERT [12,
32], or CDSSM [47] architectures). To simplify the notation, for
a node 𝑛 ∈ V, its 𝐷-dimensional initial representations will be
referred to as v̂0

𝑛 (with v̂0
𝑛 ≡ x̂0

𝑖
if the node 𝑛 is the document

𝑖 ∈ [𝑁] and v̂0
𝑛 ≡ ẑ0

𝑙
if node 𝑛 is the label 𝑙 ∈ [𝐿]).

Graph Neural Networks: For tasks such as node classification
[19], link prediction [58], etc, GNNs refine a node’s initial embed-
ding by recursively aggregating embeddings of nodes in its neigh-
bourhood. Given a notion of neighborhood N : V → 2V, GNNs
repeatedly apply convolution C and transformation T operations to
obtain refined node embeddings. Let v̂𝑘𝑛 denote the embedding of
node 𝑛 ∈ V after 𝑘 such operations, or 𝑘 hops, then

â𝑘𝑛 = C𝑘 ({v̂𝑘−1
𝑚 , â𝑘−1

𝑚 :𝑚 ∈ N (𝑛)})

v̂𝑘𝑛 = T𝑘 ({v̂𝑘−1
𝑛 , â𝑘−1

𝑛 }),

where for𝑘 = 0, we use â0
𝑛 = v̂0

𝑛 as a default. For sake of scalability, it
is common to use subsampled neighborhoods, e.g. use only |N (𝑣) | =
FO[𝑘] neighbors of node 𝑣 during the convolution operation at the
𝑘th hop. The fanout FO[𝑘] is tuned for hop lengths. GNNs variants
differ in their convolution [19, 27, 49, 56] and transformation [16,
19, 26, 51, 52] operations, among other factors.

Shortcomings of GNNs for XC To study the applicability of
existing GNN methods to XC problems, a GraphSAGE [19] model
was trained over the document-label graph on a link prediction task
with a total of 𝐾 hops. At prediction time, labels were ranked using
an Approximate Neighbor Neighbor Search (ANNS) [34] structure
over the label embeddings ẑ𝐾

𝑙
: 𝑙 ∈ [𝐿] obtained after the last hop.

The performance of the model (as measured by precision at 1,3,5 –
see Table 1) deteriorated with increasing 𝐾 . This corroborates other
works [1, 60] that also observed that GNNs are unable to make
optimal use of higher-order neighborhoods.

4 GalaXC: Graph neurAl networks with
Labelwise Attention for eXtreme
Classification

Summary: GalaXC consists of three components 1) a light-weight
GNN architecture that effectively utilizes multi-hop neighborhoods
at extreme scales to offer multi-resolution embeddings for docu-
ments, 2) high-capacity extreme classifiers and a label-wise atten-
tion mechanism over the multi-resolution embeddings, and 3) a
scalable mechanism to incorporate test documents into the graph
to make predictions in both cold- and warm-start settings.

Graph Convolution Block

ො𝐚𝑛
𝑘 = 𝒞𝑘 ො𝐚𝑛

𝑘−1 = 1 + 𝜖𝑘 ⋅ ො𝐚𝑛
𝑘−1

+Σ𝑚∈𝒩 𝑛 ො𝐚𝑚
𝑘−1

𝒞𝑘
1 + 𝜖𝑘

N
ei

gh
b

o
u

rs

Transformation Block

𝒯𝑘 𝐚 = 𝐚 + 𝛅

𝜹 = ReLU BN 𝐑𝑘 ⋅ ReLU 𝐚

𝒯𝑘

…

…
𝐑𝑘

ReLU
BN

ReLU

Figure 1:GalaXC uses light-weight yet effective components
to build its multi-layer GNN (see Fig 2) with each layer 𝑘 us-
ing a fresh instance C𝑘 ,T𝑘 of the components. The graph con-
volution block (Left) is parameterized by a scalar 𝜖𝑘 whereas
the transformation block (Right) implements a residual
layer parameterized by a matrix R𝑘 ∈ R𝐷×𝐷 , followed by
batch-normalization and ReLU layers.

A Multihop-friendly GNN: Given initial embeddings v̂0
𝑛, 𝑛 ∈

V for the nodes of the graph (recall that these are simply the initial
embeddings for the documents x̂0

𝑖
, 𝑖 ∈ [𝑁] and labels ẑ0

𝑙
, 𝑙 ∈ [𝐿])

GalaXC uses light-weight convolution and transformation opera-
tors to learn embeddings for documents and labels in a way that
benefits from multi-hop convolutions with several advantages:
(1) By enabling collaborative learning and the use of transitive

relations such as those discussed in Section 1, this benefits tail
labels for which scarce training data is available.

(2) This also benefits short-text applications in general where tex-
tual descriptions of documents and labels may not be very
expressive and contain only 5-10 tokens.

(3) It allows additional sources of information e.g. warm starts, to
be incorporated efficiently at prediction time.
The convolution operator C𝑘 used by GalaXC is described in

Fig 1. The weighted-sum aggregator [51], parameterized by a scalar
𝜖𝑘 , was used to implement convolutions.

â𝑘𝑛 = (1 + 𝜖𝑘) · â𝑘−1
𝑛 +

∑
𝑚∈N(𝑛)

â𝑘−1
𝑚

For every node 𝑛 ∈ V, a random set of FO[𝑘] neighbors was sam-
pled for every node (see Table 3 for hyperparameters) to construct
N(𝑛). As a default, â0

𝑛 was set to the initial embeddings v̂0
𝑛 for

every node. We note that the above architecture does not introduce
any non-linearity between successive convolutions. Instead, the
transformation block is used to convert convolved embeddings â𝑘𝑛
at a certain layer into final embeddings v̂𝑘𝑛 i.e.

v̂𝑘𝑛 = T𝑘 (â𝑘𝑛),

where the transformation block T𝑘 (see Fig 1) implements a residual
layer parameterized by a matrix R𝑘 ∈ R𝐷×𝐷 and uses ReLU [28]
and batch-normalization (BN) [21] layers and a skip connection [20].
Similar residual and skip connection-based architectures have been

GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

𝒯1𝒞1

𝒯2𝒞2

𝒯3𝒞3

ො𝐯𝑛
1 = 𝒯1 ො𝐚𝑛

1

ො𝐯𝑛
2 = 𝒯2 ො𝐚𝑛

2

ො𝐯𝑛
3 = 𝒯3 ො𝐚𝑛

3

ො𝐯𝑛
0 ≡ ො𝐚𝑛

0

Immediate Labels

Similar Documents

Similar Labels

𝒢

document
label

Legend

ො𝐚𝑛
1

ො𝐚𝑛
1

ො𝐚𝑛
2

ො𝐚𝑛
3

ො𝐚𝑛
2

Figure 2:GalaXC’s multi-hopGNN architecture allows a doc-
ument to, in successive hops, aggregate information from its
own labels, then related documents with which it shares la-
bels, and finally other labels present in related documents.

widely adopted in many applications [20, 29]. To implement mul-
tiple hops, each layer of GalaXC’s GNN uses a fresh instance of
these components. Fig 2 shows GalaXC’s overall GNN architecture.

1-vs-All LabelClassifiers andLabel-wiseAttention:GalaXC
uses high capacity 1-vs-All (OvA) classifiers W = [w1, . . . ,w𝐿] ∈
R𝐷×𝐿 that outperform tree- and embedding-based classifiers [3, 4,
9, 22, 42, 54]. However, GalaXC also exploits the multi-resolution
embeddings for documents x̂𝑘

𝑖
, 𝑘 ∈ [𝐾] offered by the GNN archi-

tecture, to allow each label to weigh these resolutions differently.
For example, tail labels do not have sufficient context because of
their low connectivity in the graph, and might benefit from em-
beddings that cover a larger neighborhood, which is offered by
larger 𝑘 whereas data-rich head labels might prefer focussed em-
beddings offered by small 𝑘 . This phenomenon is confirmed in
experiments (see Fig 6). To effect label-wise attention, real scalars
𝑒𝑙𝑘 ∈ R are learnt for every label 𝑙 ∈ [𝐿] and layer 𝑘 ∈ [𝐾] in the
GNN. Attention weights are obtained by using a softmax opera-
tion i.e. 𝛼𝑙𝑘 = exp(𝑒𝑙𝑘)/

∑
𝑘′∈[𝐾] exp 𝑒𝑙𝑘′ . Given multi-resolution

embeddings x̂𝑘 , 𝑘 ∈ [𝐾] for a document, when calculating the score
for a label 𝑙 ∈ [𝐿], first a label-specific embedding is calculated as

x̂(𝑙) =
∑
𝑘∈𝐾

𝛼𝑙𝑘 · x̂𝑘 ,

and then the 1-vs-all classifier is applied to obtain the score for this
label as 𝑠𝑙 =

〈
w𝑙 , x̂(𝑙)

〉
. GalaXC’s label-wise attention mechanism

requires learning O (𝐿𝐾) additional parameters where𝐾 = 3 which
increases training time by around 10%. However, it is far more cost-
effective than attention mechanisms employed by methods such as
AttentionXML [57] which are more expensive yet less accurate.

ො𝐱0

Primal Prey

𝒢

ො𝐱1

ො𝐱2

ො𝐱3
𝛼𝑙
3

ො𝐱(𝑙)

𝛼𝑙
2

𝛼𝑙
1

𝐰𝑙

𝑠𝑙

Shortlister

Figure 3: GalaXC’s frugal prediction pipeline scales to mil-
lions of labels. Given a document, its initial embedding x̂0

is used to introduce it into the graph. The GNN architecture
is then used to obtain multi-resolution embeddings that are
used to both shortlist the most likely labels, as well as make
final predictions using the label-wise attention mechanism.

Cold- andWarm-start Prediction Pipeline: For the standard
cold start settingwhere test documents are not part of the document-
label graph used for training, new documents need to be first intro-
duced into the graph. This is done by constructing an ANNS graph
using the initial embeddings of all training labels and documents
i.e. x̂0

𝑖
, 𝑖 ∈ [𝑁] and ẑ0

𝑙
, 𝑙 ∈ [𝐿]. Given the initial embedding of a test

document x̂0, edges are introduced to its 4 nearest neighbors. Note
that these neighbors may be labels or even train documents. In
warm start settings, edges are introduced to the warm-start labels
instead. Having done this, the GNN architecture is used to obtain
multi-resolution embeddings x̂𝑘 , 𝑘 ∈ [𝐾] for the test document.

Shortlisting and Prediction: XC applications demand predic-
tions in milliseconds which necessitates a prediction time complex-
ity no worse than O (𝐷 log𝐿) whereas evaluating label scores for
all labels takes Ω (𝐷𝐿) time. To remedy this, a shortlister is created
to return, for any document, a set S of O (log𝐿) labels that seem
most relevant to it. For a test document, label-wise embeddings x̂(𝑙)
are created only with respect to labels 𝑙 ∈ 𝑆 . To create the short-
lister, multi-resolution embedings of labels are averaged to obtain
z̄𝑙 = 1

𝐾

∑
𝑘∈[𝐾] ẑ𝑘𝑙 and a second ANNS graph is created over these

averaged embeddings. Given a test document, its multi-resolution
embeddings (obtained as shown above) are similarly averaged to
obtain x̄ = 1

𝐾

∑
𝑘∈[𝐾] x̂𝑘 and the top 500 neighbors of x̄ are short-

listed to form the set S of potential labels for which label-wise
embeddings are then calculated to rank them. Fig 3 shows the fru-
gal prediction pipeline adopted byGalaXC that performs prediction
in O (𝐷 log𝐿) time. GalaXC’s shortlister was found to offer much
better recall than if using the initial embeddings to create short-
lists. For example, on the LF-AmazonTitles-131K dataset, the recall
for the top 100 labels shortlisted using the initial and convolved
embeddings were around 49% and 64% respectively.

4.1 Efficient Training: the DeepXML Pipeline
Summary: GalaXC adopts the scalable DeepXML pipeline [10]
that splits training into 4 modules. However, unlike previous works
such as Astec [10] and DECAF [38] which also use this pipeline,
GalaXC executes a single training run, with the first few epochs
executing Module I and the rest of the epochs executing Module IV.
In summary, Module I jointly learns the GNN architecture, extreme

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Saini, et al.

classifiers, and attention model weights using online and random
negative mining. Module II retrieves label shortlists for all data
points to make further training more efficient using hard negatives.
Module III simply restarts training with model parameters set to
their values at the end of Module I. Module IV then continues
training but with shortlisted negative labels instead.

Initial Embeddings: Although GalaXC is agnostic to the ini-
tial embeddings used for labels and documents, for experiments,
pre-trained tokens from Astec [10] or CDSSM [47] were chosen to
be combined to obtain initial embeddings (see Fig 4). Both docu-
ments and labels were presented as sparse bag-of-tokens vectors
i.e. document 𝑖 is presented as x𝑖 ∈ R𝑉 where 𝑥𝑖𝑡 is the TF-IDF
weight of token 𝑡 ∈ [𝑉] in the 𝑖th document. Similarly, label 𝑙 is
presented as z𝑙 ∈ R𝑉 . Given token embeddings for all 𝑉 tokens in
the vocabularly i.e. E = [e1, . . . , e𝑉] ∈ R𝐷×𝑉 , initial embeddings
were obtained as x̂0

𝑖
= Ex𝑖 , ẑ0

𝑙
= Ez𝑙 . This light-weight embedding

architecture has been shown to be well-suited for short-text appli-
cations [10, 38]. To be sure, GalaXC does not fine-tune the token
embeddings further and consequently, initial embeddings remain
frozen throughout training.

Loss Function, Regularization and Initialization: The bi-
nary cross-entropy loss was used with the Adam optimizer. 𝜖𝑘
values in the convolution blocks C𝑘 were initialized to uniformly
random values in [0, 1). A dropout layer with rate 0.5 was used after
every ReLU layer. The residual matrices R𝑘 in the transformation
blocks were initialized as identity and batch normalization parame-
ters were initialized to 𝛾 = 1 and 𝛽 = 0. The pre-attention weights
i.e. 𝑒𝑙𝑘 were initialized using the normal distribution N(0, 1). The
extreme 1-vs-All classifiers were initialized by drawing each of their
coordinates from the uniform distribution U(−𝑎, 𝑎), 𝑎 = 1/

√
(𝐷)

where 𝐷 is dimensionality of the learnt embeddings. We refer to
Section 5 for details of other hyperparameters.

NegativeMining: Learning 1-vs-All classifiers at extreme scales
poses computational challenges as doing so naively requiresΩ (𝑁𝐷𝐿)
time where 𝐷 is the dimensionality of the embeddings being learnt.
This is infeasible when working with millions of labels. A common
remedy is to instead train a document with all its positive labels (of
which there are typically only O (log𝐿)) but only a O (log𝐿)-sized
subset of its negative labels. Choosing “hard” negatives, which are
at most risk of getting mispredicted as positives, makes training
more efficient. GalaXC uses online and random negative mining
for Module I and does hard negative mining in Module II.

Module I: The GNN parameters, i.e., 𝜖𝑘 ,R𝑘 , 𝑘 ∈ [𝐾] and batch-
normalization parameters are jointly trained with the pre-attention
weights 𝑒𝑙𝑘 and the extreme 1-vs-All classifiers w𝑙 , 𝑙 ∈ [𝐿]. Given a
mini-batch 𝐵 of training documents, a random set 𝑅 of labels is sam-
pled (see Tab 3 for hyperparameter values). For every document 𝑖 ∈
𝐵 in this mini-batch, a set �̂�𝑖 of negative labels is obtained by com-
bining labels negative for document 𝑖 among positive labels of other
documents in the mini-batch and those among the sampled label
set 𝑅 i.e. �̂�𝑖 :=

{
𝑙 : 𝑦𝑖𝑙 = −1, 𝑦 𝑗𝑙 = +1, 𝑗 ∈ 𝐵

}
∪ {𝑙 : 𝑦𝑖𝑙 = −1, 𝑙 ∈ 𝑅}.

Binary cross entropy loss terms are computed only with respect to
labels in the set 𝑃𝑖 ∪ �̂�𝑖 where 𝑃𝑖 := {𝑙 : 𝑦𝑖𝑙 = +1} is the set of posi-
tive labels of document 𝑖 . Since typically |𝑃𝑖 | ≤ O (log𝐿) and |𝑅 | is
restricted, we have

��𝑃𝑖 ∪ �̂�𝑖 �� ≪ 𝐿 which allows efficient training.

ො𝐱0 = RELU 𝐄𝐱

Initial Text Embedding

Brother

800

ො𝐱0

ReLU

𝐄𝐱 = σ𝑡∈ 𝑉 𝑥𝑡 ⋅ 𝐞𝑡

PE

Figure 4: GalaXC uses pre-trained token embeddings to ob-
tain initial embeddings for documents and labels. However,
a variety of other architectures, e.g. BERT, could be used to
obtain initial embeddings.

Module II: In this module, a shortlister similar to the one used
during prediction based on averaged embeddings of labels i.e. z̄𝑙 =
1
𝐾

∑
𝑘∈[𝐾] ẑ𝑘𝑙 , is used to create an ANNS structure using which label

shortlists are drawn for each training document 𝑖 ∈ [𝑁]. Excluding
the positive labels of this document from this shortlist yields a set
𝑆𝑖 of negative labels for this document. These are arguably hard
negatives for this document as the shortlister found it challenging
to immediately distinguish them from the positive labels.

Modules III and IV: Parameters of convolution and transfor-
mation layers are fixed and training of extreme classifiers and at-
tention weights is now resumed but this time, for a document 𝑖 ,
binary cross entropy loss terms are computed only with respect
to labels in the set 𝑃𝑖 ∪ �̂�𝑖 where �̂�𝑖 is now defined as the set
of negative labels for document 𝑖 among the positive and short-
listed hard negative labels for other documents in the mini batch
i.e. �̂�𝑖 :=

{
𝑙 : 𝑦𝑖𝑙 = −1, 𝑦 𝑗𝑙 = +1, 𝑗 ∈ 𝐵

}
∪
{
𝑙 : 𝑦𝑖𝑙 = −1, 𝑙 ∈ 𝑆 𝑗 , 𝑗 ∈ 𝐵

}
where 𝑆 𝑗 is the set of hard negatives for document 𝑗 obtained in
Module II. We note that on some of the datasets, GalaXC did not
require hard negative mining and the online + random negative
mining strategy used in Module I sufficed. For such datasets, Mod-
ules II, III, IV are never used.

5 EXPERIMENTS
Datasets and features GalaXC’s performance is benchmarked on
three publicly available datasets namely LF-AmazonTitles-131K, LF-
WikiSeeAlsoTitles-320K and LF-AmazonTitles-1.3M. The applica-
tions range from predicting frequently co-bought Amazon products
(LF-AmazonTitles-131K and LF-AmazonTitles-1.3M) to recommend-
ing related articles on Wikipedia web page (LF-WikiSeeAlsoTitles-
320K). Experimentswere also conducted on two proprietary datasets
(Q2K-450K and Q2K-50M) mined from the click logs of the Bing
search engine. These required a user query to be mapped to the
most relevant subset of advertiser bid phrases. To conduct offline
experiments, a dataset was created by mining Bing search logs
for a specific time period. Each user query was considered a doc-
ument and the clicked bid phrases of the corresponding surfaced
advertisements became its labels. The pairs obtained were passed
through a basic sanity filter based on click-through rate (CTR),
clicks and impressions. The final dataset, named Q2K-450K, had
around 450K labels and 541K training points (Refer to Tab 2 for more
details).GalaXC gave state-of-the-art results in warm-start scenario

GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 2: Dataset Statistics. A ‡ sign denotes information that was redacted for proprietary datasets. The first three rows are
public datasets and the last two rows are proprietary datasets.

Dataset Train Documents
𝑁

Labels
𝐿

Test Instances
𝑁 ′

Average Labels
per Document

Average Points
per label

Short text dataset statistics

LF-AmazonTitles-131K 294,805 131,073 134,835 2.29 5.15
LF-WikiSeeAlsoTitles-320K 693,082 312,330 177,515 2.11 4.68
LF-AmazonTitles-1.3M 2,248,619 1,305,265 970,237 22.20 38.24

Proprietary dataset

Q2K-450K 541,197 443,146 135,250 ‡ ‡
Q2K-50M 97,205,641 50,000,000 24,301,410 ‡ ‡

as well. The LF-AmazonTitles-131K and LF-WikiSeeAlsoTitles-320K
datasets were modified for this purpose by: 1) Retaining only those
test documents which have at at least two labels. 2) For the retained
documents, revealing half the labels and using the other half to
evaluate the model. 3) Making available the test documents and
their revealed labels to all algorithms at training time.
Baseline algorithms GalaXC was compared to leading deep ex-
treme classifiers including DECAF [38], DeepXML [10], MACH [35],
XTransformer [9], and AttentionXML [57], as well as extreme clas-
sification algorithms based on fixed features such as Bonsai [25],
Parabel [42], DiSMEC [3] and Slice [22]. For warm-start settings,
results on SwiftXML [41] are also presented. Results are only pre-
sented for methods where the available implementation could scale
to a dataset on a single GPU within a week. Implementations of
all aforementioned algorithms were provided by their respective
authors. The hyper-parameters of all baseline algorithms were set
as suggested by their authors wherever applicable and by fine-
grained validation otherwise. For all the baselines which require an
ANNS index to make predictions, HNSW [34] with hyper parame-
ters𝑀 = 100, 𝑒 𝑓 𝐶 = 300, 𝑒 𝑓 𝑆 = 100 was used. Also, most baseline
algorithms build an ensemble of models. For such baselines, the
prescribed ensemble was used for comparison. However, it is no-
table that GalaXC uses a single model that decreases maintenance
costs in production as well as training and prediction times.
Evaluation Performance was evaluated on traditional extreme clas-
sification metrics, like Precision@k (P@k), Normalized Discounted
Cumulative Gain@k(N@k) and their propensity scored variants
(PSP@k, PSN@k) [23] at different truncation levels k=1,3,5. For
evaluation, guidelines provided on the XML repository [6] were
followed. In the cold start setting, all prediction points were pre-
sented to all algorithms simultaneously in a batch. This is similar to
several real world scenarios where predictions are to be made in an
offline fashion for all test documents and don’t require streaming
predictions. GalaXC could utilize this to add connections among
test points in addition to training documents and labels. In warm
start settings, labels which were partially revealed were filtered out
from both predictions as well as the ground truth at the time of
evaluation. Training time in hours (TT), per document prediction
time in milliseconds (PT), and the model size in GigaBytes (MS) are
also reported. All metrics on public datasets were benchmarked
on a 24-core Intel Xeon 2.6 GHz machine with a single V100 GPU.

While reporting model sizes, node embeddings were included along
with the model parameters as these are required for prediction.
Hyper-parameters GalaXC’s tuneable hyper-parameters include
the batch size, number of random negatives to sample per-batch
in Module I, the number of epochs in Module I and Module IV,
and the learning rate. Tab 3 reports the hyper-parameters used in
the experiments. For single GPU training, the number of random
negatives per mini-batch in Module I was kept as 0.1𝐿 subject
to a minimum of 30K and maximum of 100K. For larger datasets
where a parallel implementationwas done by splitting the classifiers
across multiple GPUs, 100K labels were independently sampled per
GPU. For Module IV training, 500 hard negatives were sampled
in Module II per training document. Additional hyper-parameters
for the GNN include the number of hops(𝐾), fanouts for different
hops, and initial embeddings for labels and documents. 𝐾 = 3 was
used for all datasets. For all other parameters, please refer to Tab 3.
For smaller datasets, Module IV training was not required as no
significant performance improvement was observed. For the LF-
AmazonTitles-1.3M dataset, which has high connectivity between
nodes, considering only the top 5 neighbors for head labels for
graph construction (based on ANNS with x̂0) gave slightly better
results. At prediction time, a test document was introduced in the
graph by connecting it to closest 4 nodes (based on ANNS with x̂0

or CTR in case of the Aux-Test setting – see Tab 10).
Results on benchmark datasets: Tab 5 presents the results of
GalaXC and baseline algorithms in the standard cold start setting.
Compared to leading deep extreme classifiers like Astec, MACH
and AttentionXML which don’t use label metadata, GalaXC can
be up to 18% more accurate, while being 2-50× faster to train on
a single GPU. Specifically, GalaXC is at least 4% better than At-
tentionXML (which also employs label attention) in P@5 which
helps demonstrate the efficacy of the attention mechanism used by
GalaXC. Further, GalaXC is 1-3% better than Astec in P@5 indicat-
ing the benefit of collaborative feature learning though the joint
graph. Compared to DECAF and X-Transformer, both of which
utilizes label features for training, GalaXC is upto 3% and 11% more
accurate in terms of PSP@1, respectively. Furthermore, GalaXC is
around 7× faster to train than DECAF.GalaXC is up to 15% better in
P@1 compared to extreme classifiers like Slice, Parabel, Bonsai that
use BoW or fixed features , indicating that prediction quality can be
improved by learning task-specific features. Further, GalaXC leads

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Saini, et al.

Table 3: Hyper-parameters for different datasets for GalaXC. Astec refers to 300-dimensional embeddings obtained from
Astec’s surrogate task. CDSSM refers to proprietary 64-dimensional CDSSM embeddings, fine tuned on queries and adver-
tiser keywords. For all datasets, a starting learning rate of 0.001 was used. The learning rate was reduced by the DLR factor
after each epoch as per the LR schedule. A dropout with probability 0.5 was used consistently.

Dataset Init Embeddings Fanouts Num Batch random Num Epochs Module I, IV Batch Size LR schedule DLR factor

LF-AmazonTitles-131K Astec 4, 3, 2 30000 30, 0 256 5, 10, 15, 20, 25, 28 0.5
LF-WikiSeeAlsoTitles-320K Astec 4, 3, 2 32000 30, 0 256 5, 10, 15, 20, 25, 28 0.5
LF-AmazonTitles-1.3M Astec 3, 3, 3 100000 24, 15 512 4,8,12,16,18,20,22 0.5
Q2K-450K Astec 4, 3, 2 45000 30, 0 512 5, 10, 15, 20, 25, 28 0.5
Q2K-50M CDSSM 3, 3, 3 100000 per GPU split 4, 0 1024 0, 1, 2, 3 0.5

Table 4: Recall@100when predictions aremade by querying
test document embeddings on an ANNS index built on label
embeddings offered by various methods.

Dataset fastText Astec DECAF GalaXC

LF-AmazonTitles-131K 38.15 49.04 51.41 64.03
LF-WikiSeeAlsoTitles-320K 34.05 33.50 33.69 49.21

to disproportionately more gains in terms of propensity scored pre-
cision metrics, which reward predicting tail labels more, indicating
that GalaXC can predict tail labels better. Specifically, compared
to DECAF, GalaXC can be up to 3% better in PSP@5 metric. Also,
as indicated in Fig 5, better predictions on tail labels are the ma-
jor contributor to GalaXC’s performance gain over methods like
DECAF, Astec, MACH and AttentionXML. The document and la-
bel embeddings trained collaboratively using GalaXC can be of
independent interest for extremely low latency applications which
disallow the use of extreme classifiers and only allow ANNS calls
at prediction time. Table 4 shows that GalaXC’s embeddings offer
13% and 15% better recall@100 than DECAF and Astec embeddings
on the LF-AmazonTitles-131K dataset.
Warm start setting Tab 6 compares GalaXC with various base-
lines on the warm start setting. Compared to SwiftXML which is
specifically designed for the warm start scenario, GalaXC is up to
8% and 25% better in P@5 and PSP@5 metrics respectively. GalaXC
also outperforms other XC methods like DECAF, Astec by upto
10%. This could be attributed to the novel graph based document
encoding block of the GalaXC where multi-hop embeddings of the
same document can efficiently encode text embeddings of partially
revealed labels.
Ablations:GalaXC’s accurate and scalable architecture is the result
of carefully chosen design choices. Other possible choices for the
various components of the GalaXC are discussed below.

(1) Encoder architectures: Experiments were conducted with
different graph encoders like GraphSAGE [19] and GIN [51].
Tab 7 shows that GalaXC’s per-label attention block can
be upto 2% and 4% more accurate as compared to GIN and
GraphSAGE, respectively. Experiments were also conducted
by removing the per-label attention mechanism in GalaXC
(GalaXC-NoAtt) and averaging the embeddings from various
hops. GalaXC was found to be more accurate than GalaXC-
NoAtt which justifies the use of per-label attention over the
multi-resolution embeddings.

complete
(#312K)

5
(#195K)
(1.49)

4
(#74K)
(3.94)

3
(#31K)
(9.14)

2
(#9K)

(30.98)

1
(#1K)

(200.78)
Quantiles

 (Increasing Freq.)

0.0
2.5
5.0
7.5

10.0
12.5

Pr
ec

isi
on

@
5

LF-WikiSeeAlsoTitles-320K
GalaXC
DECAF
Astec
MACH
AttentionXML

complete
(#131K)

5
(#68K)
(1.96)

4
(#28K)
(4.72)

3
(#18K)
(7.38)

2
(#11K)
(12.11)

1
(#4K)

(31.32)
Quantiles

 (Increasing Freq.)

0

5

10

15

Pr
ec

isi
on

@
5

LF-AmazonTitles-131K
GalaXC
DECAF
Astec
MACH
AttentionXML

Figure 5: Gains of GalaXC over existing methods on differ-
ent equi-voluminous quantiles based on label popularity.

(2) Initial embedding: As GalaXC is agnostic to the choice
of initial node embeddings, experiments were conducted
with pre-trained embeddings from Astec [10], DECAF [38],
and FastText [7]. FastText embeddings were trained on the
Wikipedia corpus [7]. whereas Astec [10] and DECAF [38]
embeddings were extracted after training their respective
surrogate tasks. GalaXC trained with Astec embeddings was
found to work better than DECAF as well as FastText. Please
refer to Tab 8 for more details.

Qualitative Analysis A plot of average attention weights for la-
bel bins with increasing label frequency (Fig 6) reveals that data

GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 5: Results on standard cold start setting. TT = train time, PT = prediction time, MS =model size.GalaXC can be 18%more
accurate and up to 50× faster to train than leading deep extreme classifiers like DECAF, Astec, MACH, AttentionXML and
XTransformer, and an order of magnitude faster at prediction time. Results are only provided for algorithms that could scale
to a dataset.

Method P@1 P@3 P@5 N@3 N@5 PSP@1 PSP@3 PSP@5 PSN@3 PSN@5 TT
(hr)

PT
(ms)

MS
(GB)

LF-AmazonTitles-131K

GalaXC 39.17 26.85 19.49 40.82 43.06 32.50 38.79 43.95 36.86 39.37 0.42 1.54 0.67
DECAF 38.4 25.84 18.65 39.43 41.46 30.85 36.44 41.42 34.69 37.13 2.16 0.1 0.81
XTransformer 29.95 18.73 13.07 28.75 29.6 21.72 24.42 27.09 23.18 24.39 - 15.38 -
Astec 37.12 25.2 18.24 38.17 40.16 29.22 34.64 39.49 32.73 35.03 1.83 2.34 3.24
MACH 33.49 22.71 16.45 34.36 36.16 24.97 30.23 34.72 28.41 30.54 3.3 0.23 2.35
AttentionXML 32.25 21.7 15.61 32.83 34.42 23.97 28.6 32.57 26.88 28.75 20.73 5.19 2.61

Bonsai 34.11 23.06 16.63 34.81 36.57 24.75 30.35 34.86 28.32 30.47 0.1 7.49 0.24
Slice 30.43 20.5 14.84 31.07 32.76 23.08 27.74 31.89 26.11 28.13 0.08 1.58 0.39
Parabel 32.6 21.8 15.61 32.96 34.47 23.27 28.21 32.14 26.36 28.21 0.03 0.69 0.34
DiSMEC 35.14 23.88 17.24 36.17 38.06 25.86 32.11 36.97 30.09 32.47 3.1 5.53 0.11

LF-WikiSeeAlsoTitles-320K

GalaXC 27.87 18.75 14.30 26.84 27.60 19.77 22.25 24.47 21.70 23.16 1.08 1.65 1.56
DECAF 25.14 16.90 12.86 24.99 25.95 16.73 18.99 21.01 19.18 20.75 11.16 0.09 1.76
Astec 22.72 15.12 11.43 22.16 22.87 13.69 15.81 17.5 15.56 16.75 4.17 2.67 7.3
MACH 18.06 11.91 8.99 17.57 18.17 9.68 11.28 12.53 11.19 12.14 8.23 0.52 2.51
AttentionXML 17.56 11.34 8.52 16.58 17.07 9.45 10.63 11.73 10.45 11.24 56.12 7.08 6.02

Bonsai 19.31 12.71 9.55 18.74 19.32 10.69 12.44 13.79 12.29 13.29 0.37 14.82 0.37
Slice 18.55 12.62 9.68 18.29 19.07 11.24 13.45 15.2 13.03 14.23 0.2 1.85 0.94
Parabel 17.68 11.48 8.59 16.96 17.44 9.24 10.65 11.8 10.49 11.32 0.07 0.8 0.6
DiSMEC 19.12 12.93 9.87 18.93 19.71 10.56 13.01 14.82 12.7 14.02 15.56 11.02 0.19

LF-AmazonTitles-1.3M

GalaXC 49.81 44.23 40.12 47.64 46.47 25.22 29.12 31.44 27.81 29.36 9.55 2.69 5.8
DECAF 50.67 44.49 40.35 48.05 46.85 22.07 26.54 29.3 25.06 26.85 74.47 0.16 9.62
Astec 48.82 42.62 38.44 46.11 44.8 21.47 25.41 27.86 24.08 25.66 18.54 2.61 26.66
MACH 35.68 31.22 28.35 33.42 32.27 9.32 11.65 13.26 10.79 11.65 60.39 2.09 7.68
AttentionXML 45.04 39.71 36.25 42.42 41.23 15.97 19.9 22.54 18.23 19.6 380.02 29.53 28.84

Bonsai 47.87 42.19 38.34 45.47 44.35 18.48 23.06 25.95 21.52 23.33 7.89 39.03 9.02
Slice 34.8 30.58 27.71 32.72 31.69 13.8 16.87 18.89 15.62 16.74 0.79 1.45 5.98
Parabel 46.79 41.36 37.65 44.39 43.25 16.94 21.31 24.13 19.7 21.34 1.5 0.89 11.75

starved tail labels do prefer document embeddings convolved over
broader neighborhoods as compared to head labels which tend to
pay more attention to the local neighborhood, possibly to avoid
topic drift. Tail labels pay comparatively more attention to the re-
lated documents (hop 2), while head labels pay more attention to
the document’s own relevant labels (hop 1) when computing the
document’s label-specific embedding i.e. x̂(𝑙) . Additionally, barring
extreme tail, all quantiles consistently give lower weight to hop
3 embeddings. Nonetheless, eliminating the third hop altogether
and using a variant of GalaXC with just 𝐾 = 2 hops was found
to be around 2% worse in P@1, indicating that GalaXC does offer
benefit from higher order neighborhood information. To further
understand the gains offered by GalaXC, Fig 5 divides the label set
into 5 equi-voluminous label bins and provides the contribution

of each bin to the total precision score of a method. GalaXC’s pri-
mary gains are due to more accurate tail label predictions which is
essential for real-world scenarios. Tab 9 shows an example where
GalaXC offered qualitatively better predictions than leading deep
extreme classifiers. Specifically, DECAF, which uses label text alone,
retrieves the labels “Prey” and “Primal” wrongly based on token
similarity with the document. However, in the joint document-label
graph employed by GalaXC, the test document “Primal Prey” is
connected to the training document “Carnivores” which in turn
is connected to the nodes “Carnivores 2”, “Carnivores: Ice Age”,
“Carnivores 2 (Jewel Case)”, “Primal Prey”, “Carnivores: Cityscape”.
GalaXC is thus able to make use of higher order graph correlations
and retrieve the correct predictions.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Saini, et al.

Table 6: Results on warm start setting. GalaXC is upto
25% more accurate than SwiftXML specifically designed for
warm start settings and also outperform deep extreme clas-
sifiers likeDECAF,Astec,MACH, andAttentionXMLby 17%.

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K

GalaXC 44.23 28.83 20.15 38.80 51.87 60.71
DECAF 36.58 23.31 16.43 30.66 40.79 48.32
Astec 34.86 21.83 15.25 28.60 37.32 43.91
MACH 27.94 17.95 12.53 21.50 29.21 34.41
AttentionXML 29.56 18.24 12.71 22.30 29.28 34.54
SwiftXML 30.05 18.42 12.73 24.11 30.45 35.38
Bonsai 31.28 19.50 13.60 24.20 32.32 38.23
Slice 26.57 16.46 11.52 21.08 27.65 32.80
Parabel 25.83 15.77 10.93 19.83 25.63 30.02

LF-WikiSeeAlsoTitles-320K

GalaXC 28.89 19.34 14.27 22.05 26.48 30.36
DECAF 21.94 15.46 11.86 16.48 20.83 24.90
Astec 16.95 11.66 8.78 11.67 14.80 17.50
MACH 11.39 7.78 5.85 7.23 9.10 10.75
AttentionXML 11.52 7.54 5.60 7.20 8.76 10.28
SwiftXML 13.44 8.30 5.95 8.53 9.49 10.65
Bonsai 13.22 9.03 6.87 8.62 11.06 13.27
Slice 10.98 7.41 5.77 7.87 8.72 10.14
Parabel 10.23 6.82 5.12 7.01 8.47 9.92

Table 7: Ablations using different graph encoders and a vari-
ant of GalaXC without the per label attention mechanism
(GalaXC-NoAtt).

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K

GraphSAGE 35.28 24.10 17.53 28.66 34.36 39.24
GIN 37.94 26.46 19.37 30.34 37.53 43.21
GalaXC-NoAtt 38.39 25.93 18.70 32.26 38.01 42.71
GalaXC 39.17 26.85 19.49 32.50 38.79 43.95

LF-WikiSeeAlsoTitles-320K

GraphSAGE 22.80 15.46 11.84 15.96 18.36 20.37
GIN 23.99 16.68 12.97 14.89 18.11 20.74
GalaXC-NoAtt 27.32 18.02 13.62 19.72 22.24 24.17
GalaXC 27.87 18.75 14.30 19.77 22.25 24.47

5.1 Sponsored Search: a Case Study
Significant efforts have been put into developing sponsored search
retrieval systems to surface the most relevant advertisements for
end users. This case study focuses on the Q2K application that is of
vital importance in sponsored search systems. Apart from XC meth-
ods, leading algorithms tomatch queries to keywords can be divided
into three categories: 1)Generative Models like GPT-2 [44, 50] which
are sequence-to-sequence architectures that generate bid phrases
for each input query. 2) Siamese architectures [33, 46] that train
two towers, one each for query and keyword with the objective
to bring similar pairs closer in the (shared) embedding manifold.
These generally rely on ANNS at prediction time in order to re-
trieve the closest keywords for a particular query, and 3) Graphical

Table 8: Ablation for using different initial embeddings

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K

GalaXC-Astec 39.17 26.85 19.49 32.50 38.79 43.95
GalaXC-DECAF 38.47 25.92 18.79 32.38 37.90 42.71
GalaXC-fastText 35.83 23.93 17.25 30.27 35.14 39.53
DECAF 38.40 25.84 18.65 30.85 36.44 41.42
Astec 37.12 25.20 18.24 29.22 34.64 39.49

LF-WikiSeeAlsoTitles-320K

GalaXC-Astec 27.87 18.75 14.30 19.77 22.25 24.47
GalaXC-DECAF 22.36 15.20 11.66 15.54 17.96 19.98
GalaXC-fastText 25.64 17.13 13.06 19.57 21.69 23.73
DECAF 25.14 16.90 12.86 16.73 18.99 21.01
Astec 22.72 15.12 11.43 13.69 15.81 17.5

0 1 2 3 4 5 6 7 8 9
Label Bin ID

Inc. freq.

10

20

30

40

50

No
rm

. x
 A

tte
nt

io
n

wt
s.

LF-WikiSeeAlsoTitles-320K
Hop 1 (1 ||x1||)
Hop 2 (2 ||x2||)
Hop 3 (3 ||x3||)

Figure 6: Plot for the softmax normalized attention weights
scaled by the average normof the corresponding hop embed-
ding of train documents. The label quantiles are in order of
increasing frequency.

Models [13, 18, 19] that aim to predict new links by learning over
an existing click-through graph. Table 10 compares GalaXC with
GPT-2, TwinBERT and P-Simrank. For GPT-2, 200 predictions were
generated and only those present in the keyword set were kept.
Though GPT-2 can be highly accurate in surfacing the most relevant
keyword for a query, it took around 150× more time to generate
predictions. At the same time, GPT-2 was found to be around 22%
worse than GalaXC when top 5 predictions were compared. Fur-
thermore, GalaXC was 3% better in PSP@5 metric than if retrieving
keywords using ANNS over embeddings obtained from TwinBert.
Finally,GalaXC beat the recent graph based method P-Simrank [13]
by at least 10% in all metrics. GalaXC was also more accurate than
leading deep extreme classification algorithms like DECAF, Astec
and MACH. Specifically, GalaXC was found to be around 1% and
1.8% more accurate than DECAF in P@5 and PSP@5, respectively.

Auxillary Information Sources: In production settings,GalaXC
could readily incorporate other forms of meta-data. For instance,
1) additional sources of information like query expansion using

GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 9: Predictions by GalaXC and other deep extreme
classifiers on the test document “Primal Prey” from the
LF-AmazonTitles-131K dataset. Predictions aligning with
the ground truth are typeset normally in black font color
whereas those disjoint from ground truth use light gray
color. The document had 5 ground truth labels, the 4 cor-
rectly predicted by GalaXC, along with “Paraworld”.

Method Top 5 predictions

GalaXC Carnivores: Cityscape, Carnivores 2 (Jewel Case), Car-
nivores: Ice Age, Carnivores 2, Hunter Prey (2009)

DECAF Shadow of the Colossus, Primal, God of War, Prey,
Perfect Dark Zero Limited Collector’s Edition

Astec Shadow (2009), Trail of a Serial Killer (2004), Perfect
Dark Zero Limited Collector’s Edition, The Darkness,
The Devil in Gray

MACH Shadow (2009), Mark of Kri, PlayStation 2 Memory
Card (8MB), God of War, Blood Rayne 2

AttentionXML Trail of a Serial Killer (2004), Sonic the Hedgehog
2, Street Fighter II, Mortal Kombat II, Super Mario
World

Table 10: Offline results on theQ2K-450Kdataset. InGalaXC-
Aux-Test, related searches were used to introduce test doc-
uments in the graph. GalaXC-Aux-Train exploits related
searches to densify the graph during training itself.

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

Q2K-450K

GPT-2 59.39 46.88 38.81 31.85 33.98 36.43
P-Simrank 48.78 42.07 35.13 26.67 29.91 33.01
TwinBERT 57.65 53.04 49.78 33.93 35.49 38.49

DECAF 72.49 64.88 59.53 33.40 38.22 40.12
Astec 71.95 64.51 59.31 34.26 37.73 39.16
MACH 66.77 59.18 54.66 32.53 35.90 38.17

Parabel 67.35 61.30 57.33 30.87 35.64 37.88
Slice+fastText 64.55 56.79 49.08 28.36 31.88 34.16

GalaXC 71.60 65.59 60.65 35.71 39.90 41.98
GalaXC-Aux-Test 72.57 66.43 61.29 36.44 40.68 42.71
GalaXC-Aux-Train 74.49 68.59 63.01 37.85 41.45 43.21

related searches and co-bidded clicked keywords logs could be used
to introduce test documents in the graph(GalaXC-Aux-Test), and
2) a query-query graph could also be added for new links amongst
existing nodes in the graph for training (GalaXC-Aux-Train). Ta-
ble 10 shows the results of GalaXC with addition of other forms
of meta-data. Going from GalaXC to GalaXC-Aux-Test and then to
GalaXC-Aux-Train increased the P@1 by 1% and 2%, respectively.
This demonstrates that introducing novel documents in the graph
using user preferences revealed from auxiliary sources of data can
lead to significantly better results.
A/B test on Bing: An efficient implementation of GalaXC in Py-
Torch [40], with mixed precision training to reduce GPU memory
usage and speed up training allowed GalaXC to be trained on the

Q2K-50M dataset with around 50 million labels and 97 million train-
ing points on 4× 32GB V100 GPUs within 4 days. GalaXC was
deployed on the Bing search engine to perform A/B testing on live
search engine traffic. Performance was measured in terms of Click-
Yield (CY), Query Coverage (QC), and Click-Through Rate (CTR).
Click Yield (CY) is defined as the number of clicks per unit search
query. GalaXC was found to increase the CY and CTR by 1.52% and
0.74%, respectively. This indicates that ads surfaced using GalaXC
were more relevant to the end user and hence translated into clicks.
Additionally, GalaXC could increase the Query Coverage by 1.11%,
demonstrating the ability of the algorithm to serve for queries
where ads were not previously shown. Further, human labelling
by expert judges established that GalaXC could increase the qual-
ity of predictions by 16% over the state-of-the-art in-production
techniques. As an example, for the query “Brother PE 800”, GalaXC
could exploit its graph to learn that semantic concepts like “sewing”
and “embroidery” are related to the query. GalaXC could thus bring
new keyword matches like “Brother embroidery machine” and
“Brother PE sewing”, which were not captured previously by other
techniques in production.

6 CONCLUSION
This paper developed the GalaXC algorithm to obtain better repre-
sentation of documents by incorporating neighborhood information
with the help of a joint graph over documents and labels. GalaXC
also enables more effective extreme classifiers to be learnt by using
a per-label attention mechanism that attends to multi-resolution
embeddings obtained by a scalable GNN architecture. These contri-
butions allowed GalaXC to be upto 18% more accurate than leading
deep extreme classifiers, with GalaXC performing particularly well
for tail labels. It was further demonstrated that GalaXC could ef-
ficiently utilize partially revealed labels in warm start scenarios
and other auxiliary sources of data in general. GalaXC could be
2-50× faster to train compared to deep extreme classifiers and be
efficiently scaled to datasets with tens of millions of labels. This
allowed GalaXC to be deployed in the Bing Sponsored search stack
with real world gains over state-of-the art generative, XC, IR and
two tower models currently in production.

ACKNOWLEDGMENTS
Thanks are due to Qiang Zhang, Alex Samylkin, Xuihui Liu, and
Atul Gupta for infrastructure support for large scale training, to
Gururaj K, and Sakina Bohra for help in running A/B tests, and
to Kunal Dahiya for helpful feedback. Special thanks are due to
Purushottam Kar and Anshul Mittal for valuable feedback and help
in better understanding and presenting the work.

REFERENCES
[1] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman, H. Haru-

tyunyan, G. V. Steeg, and A. Galstyan. 2019. MixHop: Higher-Order
Graph Convolutional Architectures via Sparsified Neighborhood Mixing.
arXiv:1905.00067 [cs.LG]

[2] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. 2013. Multi-label learning
with millions of labels: Recommending advertiser bid phrases for web pages. In
WWW.

[3] R. Babbar and B. Schölkopf. 2017. DiSMEC: Distributed Sparse Machines for
Extreme Multi-label Classification. In WSDM.

[4] R. Babbar and B. Schölkopf. 2019. Data scarcity, robustness and extreme multi-
label classification. ML (2019).

https://arxiv.org/abs/1905.00067

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Saini, et al.

[5] D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473 (2014).

[6] K. Bhatia, K. Dahiya, H. Jain, A. Mittal, Y. Prabhu, and M. Varma. 2016. The Ex-
treme Classification Repository: Multi-label Datasets & Code. http://manikvarma.
org/downloads/XC/XMLRepository.html

[7] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. 2017. Enriching Word Vectors
with Subword Information. Transactions of the Association for Computational
Linguistics (2017).

[8] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. 2013. Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013).

[9] W.-C. Chang, Yu H.-F., K. Zhong, Y. Yang, and I.-S. Dhillon. 2020. Taming Pre-
trained Transformers for Extreme Multi-label Text Classification. In KDD.

[10] K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave, A. Soni, H. Jain, S. Agarwal, and
M. Varma. 2021. DeepXML: A Deep Extreme Multi-Label Learning Framework
Applied to Short Text Documents. In WSDM.

[11] M. Defferrard, X. Bresson, and P. Vandergheynst. 2016. Convolutional neural
networks on graphs with fast localized spectral filtering. In Advances in neural
information processing systems. 3844–3852.

[12] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language understanding. NAACL (2019).

[13] P. Dey, K. Goel, and R. Agrawal. 2020. P-Simrank: Extending Simrank to Scale-
Free Bipartite Networks. In Proceedings of The Web Conference 2020. 3084–3090.

[14] Z. Gantner, L. Drumond, C. Freudenthaler, and L. Schmidt-Thieme. 2012. Per-
sonalized ranking for non-uniformly sampled items. In Proceedings of KDD Cup
2011. 231–247.

[15] J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin. 2016. A convolutional
encoder model for neural machine translation. arXiv preprint arXiv:1611.02344
(2016).

[16] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. 2017. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212 (2017).

[17] M. Gori, G. Monfardini, and F. Scarselli. 2005. A new model for learning in
graph domains. In Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005., Vol. 2. IEEE, 729–734.

[18] A. Grover and J. Leskovec. 2016. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining. 855–864.

[19] W. Hamilton, Z. Ying, and J. Leskovec. 2017. Inductive representation learning on
large graphs. In Advances in neural information processing systems. 1024–1034.

[20] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 770–778.

[21] S. Ioffe and C. Szegedy. 2015. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167
(2015).

[22] H. Jain, V. Balasubramanian, B. Chunduri, and M. Varma. 2019. Slice: Scalable
Linear Extreme Classifiers trained on 100 Million Labels for Related Searches. In
WSDM.

[23] H. Jain, Y. Prabhu, and M. Varma. 2016. Extreme Multi-label Loss Functions for
Recommendation, Tagging, Ranking and Other Missing Label Applications. In
KDD.

[24] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. 2017. Bag of Tricks for Efficient
Text Classification. In EACL.

[25] S. Khandagale, H. Xiao, and R. Babbar. 2019. Bonsai - Diverse and Shallow Trees
for Extreme Multi-label Classification. CoRR (2019).

[26] T. N. Kipf and M. Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[27] T. N. Kipf and M. Welling. 2017. Semi-Supervised Classification with Graph
Convolutional Networks. arXiv:1609.02907 [cs.LG]

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems. 1097–1105.

[29] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A.
Tejani, J. Totz, Z. Wang, et al. 2017. Photo-realistic single image super-resolution
using a generative adversarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 4681–4690.

[30] J. Lee, S. Bengio, S. Kim, G. Lebanon, and Y. Singer. 2014. Local collaborative
ranking. In Proceedings of the 23rd international conference on World wide web.
85–96.

[31] J. Liu, W. Chang, Y. Wu, and Y. Yang. 2017. Deep Learning for Extreme Multi-label
Text Classification. In SIGIR.

[32] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692 (2019).

[33] W. Lu, J. Jiao, and R. Zhang. 2020. TwinBERT: Distilling knowledge to twin-
structured BERT models for efficient retrieval. arXiv preprint arXiv:2002.06275
(2020).

[34] Y. A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.

IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 4 (2020), 824–
836.

[35] T. K. R. Medini, Q. Huang, Y. Wang, V. Mohan, and A. Shrivastava. 2019. Extreme
Classification in Log Memory using Count-Min Sketch: A Case Study of Amazon
Search with 50M Products. In NeurIPS.

[36] T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781 (2013).

[37] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013. Distributed
Representations of Words and Phrases and Their Compositionality. In NIPS.

[38] A. Mittal, K. Dahiya, S. Agrawal, D. Saini, S. Agarwal, P. Kar, and M. Varma. 2021.
DECAF: Deep Extreme Classification with Label Features. In WSDM.

[39] N. Natarajan and I. S Dhillon. 2014. Inductive matrix completion for predicting
gene–disease associations. Bioinformatics 30, 12 (2014), i60–i68.

[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.
Lin, N. Gimelshein, L. Antiga, et al. 2019. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information processing
systems. 8026–8037.

[41] Y. Prabhu, A. Kag, S. Gopinath, K. Dahiya, S. Harsola, R. Agrawal, and M. Varma.
2018. Extreme multi-label learning with label features for warm-start tagging,
ranking and recommendation. In WSDM.

[42] Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. 2018. Parabel: Parti-
tioned label trees for extreme classification with application to dynamic search
advertising. In WWW.

[43] Y. Prabhu and M. Varma. 2014. FastXML: A Fast, Accurate and Stable Tree-
classifier for eXtreme Multi-label Learning. In KDD.

[44] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. 2019. Language
Models are Unsupervised Multitask Learners. (2019).

[45] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. 2008. The
graph neural network model. IEEE Transactions on Neural Networks 20, 1, 61–80.

[46] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. 2014. A latent semantic model with
convolutional-pooling structure for information retrieval. In Proceedings of the
23rd ACM international conference on conference on information and knowledge
management. 101–110.

[47] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. 2014. Learning Semantic Repre-
sentations Using Convolutional Neural Networks for Web Search. WWW 2014.
https://www.microsoft.com/en-us/research/publication/learning-semantic-
representations-using-convolutional-neural-networks-for-web-search/

[48] A. Sperduti and A. Starita. 1997. Supervised neural networks for the classification
of structures. IEEE Transactions on Neural Networks 8, 3 (1997), 714–735.

[49] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. 2018.
Graph Attention Networks. arXiv:1710.10903 [stat.ML]

[50] O. Vinyals, M. Fortunato, and N. Jaitly. 2015. Pointer networks. In Advances in
neural information processing systems. 2692–2700.

[51] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. 2018. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826 (2018).

[52] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka. 2018. Repre-
sentation learning on graphs with jumping knowledge networks. arXiv preprint
arXiv:1806.03536 (2018).

[53] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. 2019. Xlnet:
Generalized autoregressive pretraining for language understanding. In Advances
in neural information processing systems. 5753–5763.

[54] E.H. I. Yen, X. Huang, W. Dai, I. Ravikumar, P.and Dhillon, and E. Xing. 2017.
PPDSparse: A Parallel Primal-Dual Sparse Method for Extreme Classification. In
KDD.

[55] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. 2018.
Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 974–983.

[56] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. 2018.
Graph Convolutional Neural Networks for Web-Scale Recommender Systems.
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (July 2018). https://doi.org/10.1145/3219819.3219890

[57] R. You, S. Dai, Z. Zhang, H. Mamitsuka, and S. Zhu. 2019. AttentionXML: Extreme
Multi-Label Text Classification with Multi-Label Attention Based Recurrent
Neural Networks. (2019).

[58] M. Zhang and Y. Chen. 2018. Link prediction based on graph neural networks.
In Advances in Neural Information Processing Systems. 5165–5175.

[59] Y. Zhang, D. Wang, and Y. Zhang. 2019. Neural IR Meets Graph Embedding: A
Ranking Model for Product Search. In The World Wide Web Conference. 2390–
2400.

[60] Z. Zhou and X. Li. 2017. Graph Convolution: A High-Order and Adaptive Ap-
proach. arXiv:1706.09916 [cs.LG]

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://arxiv.org/abs/1609.02907
https://www.microsoft.com/en-us/research/publication/learning-semantic-representations-using-convolutional-neural-networks-for-web-search/
https://www.microsoft.com/en-us/research/publication/learning-semantic-representations-using-convolutional-neural-networks-for-web-search/
https://arxiv.org/abs/1710.10903
https://doi.org/10.1145/3219819.3219890
https://arxiv.org/abs/1706.09916

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Setting
	4 GalaXC: Graph neurAl networks with Labelwise Attention for eXtreme Classification
	4.1 Efficient Training: the DeepXML Pipeline

	5 Experiments
	5.1 Sponsored Search: a Case Study

	6 Conclusion
	Acknowledgments
	References

